Bayesian Inference in Decomposable Graphical Models Using Sequential Monte Carlo Methods

نویسندگان

  • JIMMY OLSSON
  • TATJANA PAVLENKO
چکیده

In this study we present a sequential sampling methodology for Bayesian inference in decomposable graphical models. We recast the problem of graph estimation, which in general lacks natural sequential interpretation, into a sequential setting. Specifically, we propose a recursive Feynman-Kac model which generates a flow of junction tree distributions over a space of increasing dimensions and develop an efficient sequential Monte Carlo sampler. As a key ingredient of the proposal kernel in our sampler we use the Christmas tree algorithm developed in the companion paper Olsson et al. [2017]. We focus on particle MCMC methods, in particular particle Gibbs (PG) as it allows for generating MCMC chains with global moves on an underlying space of decomposable graphs. To further improve the algorithm mixing properties of this PG, we incorporate a systematic refreshment step implemented through direct sampling from a backward kernel. The theoretical properties of the algorithm are investigated, showing in particular that the refreshment step improves the algorithm performance in terms of asymptotic variance of the estimated distribution. Performance accuracy of the graph estimators are illustrated through a collection of numerical examples demonstrating the feasibility of the suggested approach in both discrete and continuous graphical models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Bayesian Inference for Multivariate Probit Models with Sparse Inverse Correlation Matrices

We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modele...

متن کامل

Bayesian inference in probabilistic graphical models

This thesis consists of four papers studying structure learning and Bayesian inference in probabilistic graphical models for both undirected and directed acyclic graphs (DAGs). Paper A presents a novel algorithm, called the Christmas tree algorithm (CTA), that incrementally construct junction trees for decomposable graphs by adding one node at a time to the underlying graph. We prove that CTA w...

متن کامل

Bayesian Inference for Logistic Regression Models using Sequential Posterior Simulation

The logistic specification has been used extensively in non-Bayesian statistics to model the dependence of discrete outcomes on the values of specified covariates. Because the likelihood function is globally weakly concave estimation by maximum likelihood is generally straightforward even in commonly arising applications with scores or hundreds of parameters. In contrast Bayesian inference has ...

متن کامل

Bayesian Graphical Models for Multivariate Functional Data

Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. By functional data, we refer to data that are realizations of random functions varying over a continuum (e.g., images, signals). We introduce a notion of conditional independence between random func...

متن کامل

Sequential Monte Carlo methods for graphical models

Inference in probabilistic graphical models (PGMs) does typically not allow for analytical solutions, confining us to various approximative methods. We propose a sequential Monte Carlo (SMC) algorithm for inference in general PGMs. Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017